jump to navigation

Dusty Space Cloud January 10, 2012

Posted by jtintle in Deep Space, Space Fotos.
Tags: , , , , , , , ,
comments closed

Credit:

ESA/NASA/JPL-Caltech/STScI

Explanation:

This new image shows the Large Magellanic Cloud galaxy in infrared light as seen by the Herschel Space Observatory, a European Space Agency-led mission with important NASA contributions, and NASA’s Spitzer Space Telescope. In the instruments’ combined data, this nearby dwarf galaxy looks like a fiery, circular explosion. Rather than fire, however, those ribbons are actually giant ripples of dust spanning tens or hundreds of light-years. Significant fields of star formation are noticeable in the center, just left of center and at right. The brightest center-left region is called 30 Doradus, or the Tarantula Nebula, for its appearance in visible light.

The colors in this image indicate temperatures in the dust that permeates the Cloud. Colder regions show where star formation is at its earliest stages or is shut off, while warm expanses point to new stars heating surrounding dust. The coolest areas and objects appear in red, corresponding to infrared light taken up by Herschel’s Spectral and Photometric Imaging Receiver at 250 microns, or millionths of a meter. Herschel’s Photodetector Array Camera and Spectrometer fills out the mid-temperature bands, shown here in green, at 100 and 160 microns. The warmest spots appear in blue, courtesy of 24- and 70-micron data from Spitzer.

Downloads:

JPEG
600 x 600 • 105.9 KB
960 x 960 • 199.8 KB
1500 x 1500 • 295 KB
3000 x 3000 • 1 MB
6000 x 6000 • 3.6 MB
15500 x 15500 • 61.6 MB
TIFF
15500 x 15500 • 384.9 MB

Advertisements

Cat’s Eye Planetary Nebula March 14, 2009

Posted by jtintle in Deep Space, Space Fotos.
Tags: , , , , , , ,
comments closed

image
Credit:

NASA/JPL-Caltech/J. Hora (Harvard-Smithsonian CfA)

Description:

The “Cat’s Eye” nebula, or NGC 6543, is a well-studied example of a “planetary nebula.” Such objects are the glowing remnants of dust and gas expelled from moderate-sized stars during their last stages of life. Our own sun will generate such a nebula in about five billion years.

NASA’s Spitzer Space Telescope has studied many such planetary nebulae in infrared light, including a variety of more distant ones, which have helped scientists identify a population of carbon-bearing stars near our galaxy’s center.

The infrared emission from the Cat’s Eye is generated by a variety of elements and molecules. The bright inner region of this nebula shows a complex structure reminiscent of a feline eye. Outside this compact region lies a series of other structures representing material that was ejected slightly earlier in the central star’s life, when it was a giant star.

The image is a composite of data from Spitzer’s infrared array camera. Light with a wavelength of 3.6 microns is rendered as blue, 5.8 microns is displayed as green and 8.0 microns is represented in red. The brightness of the central area has been greatly reduced to make it possible to maintain its visibility while enhancing the brightness of the much fainter outer features. Overall colors have been enhanced to better show slight variations in hue.


Additional Images:

Screen-Resolution (750×750) : JPEG (196 KB)
High-Resolution (1700×1700) : JPEG (760 KB) | Mac TIFF (4.2 MB)

A New View of Tycho’s Supernova Remnant March 11, 2009

Posted by jtintle in Deep Space, Space Fotos.
Tags: , , , , , , , , , ,
comments closed

Tycho's Supernova Remnant
Credit:

X-ray: NASA/CXC/SAO, Infrared: NASA/JPL-Caltech; Optical: MPIA, Calar Alto, O.Krause et al.

Description:

This composite image of the Tycho supernova remnant combines X-ray and infrared observations obtained with NASA’s Chandra X-ray Observatory and Spitzer Space Telescope, respectively, and the Calar Alto observatory, Spain. It shows the scene more than four centuries after the brilliant star explosion witnessed by Tycho Brahe and other astronomers of that era.

The explosion has left a blazing hot cloud of expanding debris (green and yellow) visible in X-rays. The location of ultra-energetic electrons in the blast’s outer shock wave can also be seen in X-rays (the circular blue line). Newly synthesized dust in the ejected material and heated pre-existing dust from the area around the supernova radiate at infrared wavelengths of 24 microns (red). Foreground and background stars in the image are white.

Oliver Krause, from the Max Planck Institute for Astronomy in Germany, recently studied reflected light from the supernova explosion seen by Brahe. Use of these “light echoes” – not shown in this figure – has confirmed previous suspicions that the explosion was a Type Ia supernova. This type of supernova is generally believed to be caused by the explosion of a white dwarf star in a binary star system.

Additional Images:

JPEG (670.6 kb)
Tiff (8.5 MB)
PS (7 MB)
Download Desktop
High-Quality Prints
Powerpoint and PDF
Image with Scalebar

Massive Young Stars Trigger Stellar Birth October 15, 2008

Posted by jtintle in Deep Space, Space Fotos.
Tags: , , , , , , , ,
comments closed

RCW 108
Credit:

X-ray: NASA/CXC/CfA/S.Wolk et al; IR: NASA/JPL-Caltech

Description:

RCW 108 is a region where stars are actively forming within the Milky Way galaxy about 4,000 light years from Earth. This is a complicated region that contains young star clusters, including one that is deeply embedded in a cloud of molecular hydrogen. By using data from different telescopes, astronomers determined that star birth in this region is being triggered by the effect of nearby, massive young stars.

This image is a composite of X-ray data from Chandra (blue) and infrared emission detected by Spitzer (red and orange). More than 400 X-ray sources were identified in Chandra’s observations of RCW 108. About 90% of these X-ray sources are thought to be part of the cluster and not stars that lie in the field-of-view either behind or in front of it. Many of the stars in RCW 108 are experiencing the violent flaring seen in other young star-forming regions such as the Orion Nebula. Gas and dust blocks much of the X-rays from the juvenile stars located in the center of the image, explaining the relative dearth of Chandra sources in this part of the image.

The Spitzer data show the location of the embedded star cluster, which appears as the bright knot of red and orange just to the left of the center of the image. Some stars from a larger cluster, known as NGC 6193, are also visible on the left side of the image. Astronomers think that the dense clouds within RCW 108 are in the process of being destroyed by intense radiation emanating from hot and massive stars in NGC 6193.

Taken together, the Chandra and Spitzer data indicate that there are more massive star candidates than expected in several areas of this image. This suggests that pockets within RCW 108 underwent localized episodes of star formation. Scientists predict that this type of star formation is triggered by the effects of radiation from bright, massive stars such as those in NGC 6193. This radiation may cause the interior of gas clouds in RCW 108 to be compressed, leading to gravitational collapse and the formation of new stars.

Additional Images:

JPEG (523.5 kb)
Tiff (8.1 MB)
PS (6.4 MB)
Download Desktop
High-Quality Prints
Powerpoint and PDF
Image with Scalebar

Supernova Flashback October 7, 2008

Posted by jtintle in Deep Space, Space Fotos.
Tags: , , , , , , , ,
comments closed

image
Credit:

NASA/JPL-Caltech/E. Dwek and R. Arendt

Explanation:

Hot spots near the shattered remains of an exploded star are echoing the blast’s first moments, say scientists using data from NASA’s Spitzer Space Telescope.

Eli Dwek of NASA’s Goddard Space Flight Center in Greenbelt, Md. and Richard Arendt of the University of Maryland, Baltimore County, say these echoes are powered by radiation from Cassiopeia A supernova shock wave that blew the star apart some 11,000 years ago.

“We’re seeing the supernova’s first flash,” Dwek said.

Previously, other Spitzer researchers discovered hot spots near the Cassiopeia A supernova remnant and recognized the spots’ importance as light echoes of the original blast. Dwek and Arendt used Spitzer data to probe this hot dust and pin down the cause of the echoes more precisely.

Six knots of silicate dust near the remnant show temperatures between -173 and -123 degrees Celsius (-280 and -190 degrees Fahrenheit). Although this might seem frigid by earthly standards, such temperatures are downright hot compared to typical interstellar dust.

Writing in the October 1 issue of The Astrophysical Journal, the scientists show that the only event that could make the grains this hot is the powerful and short-lived pulse of ultraviolet radiation and X-rays that heralded the death of the star. The flash was a hundred billion times brighter than the sun, but lasted only a day or so.

“They’ve identified the precise event during the demolition of the star that produces the echo we see,” said Michael Werner, the project scientist for Spitzer at NASA’s Jet Propulsion Laboratory in Pasadena, Calif.

Light from the explosion reached Earth in the 17th century, but no one noticed. The Spitzer find gives astronomers a second chance to study the supernova as it unfolds.

Although the explosion originally escaped detection, its aftermath — a hot, expanding gas cloud known as Cassiopeia A (Cas A, for short) — is one of the best-studied supernova remnants. The blast zone lies 11,000 light-years away in the constellation Cassiopeia.

When a massive star runs out of nuclear fuel, its core collapses into a superdense, city-sized object called a neutron star. As the neutron star forms, it stiffens and rebounds. This triggers a mammoth shock wave that blows the star’s outer layers to smithereens. The exiting shock creates a high-energy flash that precedes the supernova’s rise in visible light.

Evidence for a flash associated with this “shock breakout” existed only in computer simulations until January 9, 2008. That’s when NASA’s Swift satellite detected a 5-minute-long X-ray pulse from galaxy NGC 2770. A few days later, a new supernova — designated SN 2008D — appeared in the galaxy.

The infrared echoes from Cas A arise from dust clouds about 160 light-years farther away than the remnant. The supernova’s initial radiation pulse expands through space at the speed of light, then encounters the clouds and heats their dust grains. The dust, in turn, re-radiates the energy at infrared wavelengths.

The breakout radiation took 160 years to reach the clouds and, once heated, the dust’s infrared energy had to make up the same distance. This extra travel time results in a 320-year offset between the supernova’s initial outward-moving flash and arrival of the dust’s infrared echo at Earth. The researchers plan to use the echoes to paint an intimate portrait of the explosion, the star and the immediate environment.

When light from the Cas A supernova first reached Earth in the late 1600s, no one reported seeing a new star. On August 16, 1680, the English astronomer John Flamsteed might have seen the supernova without recognizing it. He recorded a faint naked-eye star near the position of Cas A, but none exists there now.

3 Year Anniversery Come and Gone October 5, 2008

Posted by jtintle in Deep Space, Space Fotos.
Tags: , , , , , , , , , , , , , ,
comments closed

Well I must be losing it, since I forgot the 3 year anniversery of Space Photos. It’s been 3 years and one month since I have been posting images of/from space. So in that frame of mine I will repost my first post here at Space Photos. I would like to thank all of you, who have visited my site in the last 3 years and came back after some slow periods of posting.

My First Post here was an image from the Hubble Space Telescope, which happens to be on of my favorite sources of images.
Title:

Debris Ring Around a Star

Image:
Ring

Description:

NASA Hubble Space Telescope’s most detailed visible-light image ever taken of a narrow, dusty ring around the nearby star Fomalhaut (HD 216956), offers the strongest evidence yet that an unruly and unseen planet may be gravitationally tugging on the ring.

Hubble unequivocally shows that the center of the ring is a whopping 1.4 billion miles (15 astronomical units) away from the star. This is a distance equal to nearly halfway across our solar system. The most plausible explanation, astronomers said, is that an unseen planet moving in an elliptical orbit is reshaping the ring with its gravitational pull. The geometrically striking ring, tilted obliquely toward Earth, would not have such a great offset if it were simply being influenced by Fomalhaut’s gravity alone.

An offset of the ring center from the star has been inferred from previous and longer wavelength observations using submillimeter telescopes on Mauna Kea, Hawaii, the Spitzer Space Telescope, Caltech’s Submillimeter Observatory and applying theoretical modeling and physical assumptions. Now Hubble’s sharp images directly reveal the ring’s offset from Fomalhaut.

These new observations provide strong evidence that at least one unseen planetary mass object is orbiting the star. Hubble would have detected an object larger than a planet, such as a brown dwarf. “Our new Hubble images confirm those earlier hypotheses that proposed a planet was perturbing the ring,” said Paul Kalas of the University of California at Berkeley. The ring is similar to our solar system’s Kuiper Belt, a vast reservoir of icy material left over from the formation of our solar system planets.

The observations offer insights into our solar system’s formative years, when the planets played a game of demolition derby with the debris left over from the formation of our planets, gravitationally scattering many objects across space. Some icy material may have collided with the inner solar system planets, irrigating them with water formed in the colder outer solar system. Other debris may have traveled outward, forming the Kuiper Belt and the Oort Cloud, a spherical cloud of material surrounding the solar system.

Only Hubble has the exquisite optical resolution to resolve that the ring’s inner edge is sharper than its outer edge, a telltale sign that an object is gravitationally sweeping out material like a plow clearing away snow. Another classic signature of a planet’s influence is the ring’s relatively narrow width, about 2.3 billion miles (25 astronomical units). Without an object to gravitationally keep the ring material intact, astronomers said, the particles would spread out much wider.

“What we see in this ring is similar to what is seen in the Cassini spacecraft images of Saturn’s narrow rings. In those images, Saturn’s moons are ‘shepherding’ the ring material and keeping the ring from spreading out,” Kalas said.

The suspected planet may be orbiting far away from Fomalhaut, inside the dust ring’s inner edge, between 4.7 billion and 6.5 billion miles (50 to 70 astronomical units) from the star. The ring is 12 billion miles (133 astronomical units) from Fomalhaut, which is much farther away than our outermost planet Pluto is from the Sun. These Hubble observations do not detect the putative planet directly, so the astronomers cannot measure its mass. They will, instead, conduct computer simulations of the ring’s dynamics to estimate the planet’s mass.

Kalas and collaborators James R. Graham of the University of California at Berkeley and Mark Clampin of the NASA Goddard Space Flight Center in Greenbelt, Md., will publish their findings in the June 23, 2005 issue of the journal Nature.

Fomalhaut, a 200-million-year-old star, is a mere infant compared to our own 4.5-billion-year-old Sun. It resides 25 light-years away from the Sun. Located in the constellation Piscis Austrinus (the Southern Fish), the Fomalhaut ring is ten times as old as debris disks seen previously around the stars AU Microscopii and Beta Pictoris, where planets may still be forming. If our solar system is any example, planets should have formed around Fomalhaut within tens of millions of years after the birth of the star.

The Hubble images also provide a glimpse of the outer planetary region surrounding a star other than our Sun. Many of the more than 100 planets detected beyond our solar system are orbiting close to their stars. Most of the current planet-detecting techniques favor finding planets that are close to their stars.

“The size of Fomalhaut’s dust ring suggests that not all planetary systems form and evolve in the same way — planetary architectures can be quite different from star to star,” Kalas explained. “While Fomalhaut’s ring is analogous to the Kuiper Belt, its diameter is four times greater than that of the Kuiper Belt.”

The astronomers used the Advanced Camera for Surveys’ (ACS) coronagraph aboard Hubble to block out the light from the bright star so they could see details in the faint ring.

“The ACS’s coronagraph offers high contrast, allowing us to see the ring’s structure against the extremely bright glare from Fomalhaut,” Clampin said. “This observation is currently impossible to do at visible wavelengths without the Hubble Space Telescope. The fact that we were able to detect it with Hubble was unexpected, but impressive.”

Kalas and his collaborators used Hubble over a five-month period in 2004 — May 17, Aug. 2, and Oct. 27 — to map the ring’s structure. One side of the ring has yet to be imaged because it extended beyond the ACS camera’s field of view. The astronomers will use Hubble again this summer to map the entire ring. They expect that the additional Hubble data will reveal whether or not the ring has any gaps, which could have been carved out by the gravitational influence of an unseen body. The longer, deeper exposures also may show whether the ring has an even wider diameter than currently seen. In addition, the astronomers will measure the ring’s colors to determine its physical properties, including its composition.

Previous thermal emission maps of Fomalhaut showed that one side of the ring is warmer than the other side, implying that the ring is off center by about half the distance measured by Hubble. This difference might be explained by the fact that Hubble’s ACS images of the ring’s structure are 100 times sharper than the longer wavelength observations, and hence, yield a much more accurate result. Or the discrepancy might imply that the ring’s size looks different at other wavelengths.

Fomalhaut’s dust ring was discovered in 1983 in observations made by NASA’s Infrared Astronomical Satellite (IRAS). The system is a compelling target for future telescopes such as the James Webb Space Telescope and the Terrestrial Planet Finder, Kalas said

Credit:

NASA,ESA, P. Kalas and J. Graham (University of California, Berkeley), and M. Clampin (NASA‘s Goddard Space Flight Center)

Generations of Stars in W5 September 7, 2008

Posted by jtintle in Deep Space, Space Fotos.
Tags: , , , , , , , , , , ,
comments closed

See Explanation.  Clicking on the picture will download  the highest resolution version available.

Credit 

Lori Allen, Xavier Koenig (Harvard-Smithsonian CfAet al.JPL-CaltechNASA

Explanation: 

Giant star forming region W5 is over 200 light-years across and about 6,500 light-years away in the constellation Cassiopeia. W5’s sculpted clouds of cold gas and dust seem to form fantastic shapes in this impressive mosaic of infrared images from the Spitzer Space Telescope. In fact, the area on the right includes the structures previously dubbed the Mountains of Creation. New evidence indicates that successive generations of stars formed in the W5 region in an expanding pattern of triggered star formation. The older, earlier generations of stars seem to cluster near the middle of the enormous cavities, with younger stars seen near the rims. Winds and radiation from the older, central stars likely carve out and compress surrounding interstellar material, triggering the collapse that gave rise to younger, later generations of stars farther out. In the false-color image, heated dust still within the cavities appears red, while the youngest stars are forming in the whitish areas. W5 is also known as IC 1848, and together with IC 1805 it is part of a complex region popularly dubbed the Heart and Soul Nebulae.

Spitzer Reveals Stellar ‘Family Tree’ August 24, 2008

Posted by jtintle in Deep Space, Space Fotos.
Tags: , , , , , , , , , ,
comments closed

https://i0.wp.com/ipac.jpl.nasa.gov/media_images/ssc2008-15a1_small.jpg

Credit:

NASA/JPL-Caltech/L. Allen & X. Koenig (Harvard-Smithsonian CfA)

Additional Images:

Screen-Resolution (360×450) : JPEG (176 KB)
Medium-Resolution (720×900) : JPEG (372 KB)
High-Resolution (2400×3000) : JPEG (2 MB) | Mac TIFF (8.3 MB) | PC TIFF (8.3 MB)


Explanation:

Generations of stars can be seen in this new infrared portrait from NASA’s Spitzer Space Telescope. In this wispy star-forming region, called W5, the oldest stars can be seen as blue dots in the centers of the two hollow cavities (other blue dots are background and foreground stars not associated with the region). Younger stars line the rims of the cavities, and some can be seen as pink dots at the tips of the elephant-trunk-like pillars. The white knotty areas are where the youngest stars are forming. Red shows heated dust that pervades the region’s cavities, while green highlights dense clouds.

W5 spans an area of sky equivalent to four full moons and is about 6,500 light-years away in the constellation Cassiopeia. The Spitzer picture was taken over a period of 24 hours.

Like other massive star-forming regions, such as Orion and Carina, W5 contains large cavities that were carved out by radiation and winds from the region’s most massive stars. According to the theory of triggered star-formation, the carving out of these cavities pushes gas together, causing it to ignite into successive generations of new stars.

This image contains some of the best evidence yet for the triggered star-formation theory. Scientists analyzing the photo have been able to show that the ages of the stars become progressively and systematically younger with distance from the center of the cavities.

This is a three-color composite showing infrared observations from two Spitzer instruments. Blue represents 3.6-micron light and green shows light of 8 microns, both captured by Spitzer’s infrared array camera. Red is 24-micron light detected by Spitzer’s multiband imaging photometer.

Gallery Explorer: Snowflake Cluster August 17, 2008

Posted by jtintle in Deep Space, Video.
Tags: , , , ,
comments closed

Description:

A group of baby stars form a “stellar snowflake” in Spitzer’s observations of a dusty region near the Cone Nebula. (Running Time: 1:56)

Source:

Spitzer Space Telescope’s Hidden Universe HD

“No Organics” Zone Circles Pinwheel July 25, 2008

Posted by jtintle in Deep Space.
Tags: , , , , , ,
comments closed

Messier 101 galaxy

Description:

The Pinwheel galaxy, otherwise known as Messier 101, sports bright reddish edges in this new infrared image from NASA’s Spitzer Space Telescope. Research from Spitzer has revealed that this outer red zone lacks organic molecules present in the rest of the galaxy. The red and blue spots outside of the spiral galaxy are either foreground stars or more distant galaxies.

The organics, called polycyclic aromatic hydrocarbons, are dusty, carbon-containing molecules that help in the formation of stars. On Earth, they are found anywhere combustion reactions take place, such as barbeque pits and exhaust pipes. Scientists also believe this space dust has the potential to be converted into the stuff of life.

Spitzer found that the polycyclic aromatic hydrocarbons decrease in concentration toward the outer portion of the Pinwheel galaxy, then quickly drop off and are no longer detected at its very outer rim. According to astronomers, there’s a threshold at the rim where the organic material is being destroyed by harsh radiation from stars. Radiation is more damaging at the far reaches of a galaxy because the stars there have less heavy metals, and metals dampen the radiation.

The findings help researchers understand how stars can form in these harsh environments, where polycyclic aromatic hydrocarbons are lacking. Under normal circumstances, the polycyclic aromatic hydrocarbons help cool down star-forming clouds, allowing them to collapse into stars. In regions like the rim of the Pinwheel — as well as the very early universe — stars form without the organic dust. Astronomers don’t know precisely how this works, so the rim of the Pinwheel provides them with a laboratory for examining the process relatively close up.

In this image, infrared light with a wavelength of 3.6 microns is colored blue; 8-micron light is green; and 24-micron light is red. All three of Spitzer’s instruments were used in the study: the infrared array camera, the multiband imaging photometer and the infrared spectrograph.

Image credit:

NASA/JPL-Caltech/STScI

› Browse image
› High-resolution TIF (16Mb)

%d bloggers like this: